Volume 2, Issue 3, June 2017, Page: 16-21
Radioactive Ion Beam Targets and the Associated Processes
Firdous Ahmad Khan, Department of Physics, Government Degree College Anantnag, Anantnag, India
Received: Jul. 12, 2017;       Accepted: Jul. 20, 2017;       Published: Sep. 19, 2017
DOI: 10.11648/j.ijbbmb.20170203.11      View  1048      Downloads  46
Abstract
A large number of targets is required to produce different types of radioactive species. These radioactive ion beams have many uses in addition to their use in various kinds of experiments in different branches of physics. In this article different geometries of RIB targets, the diffusion and surface adsorption processes related to the targets etc. have been explained. Importance of composite thick targets (CTT) and the vacuum infiltration technique used to fabricate such targets have also been discussed.
Keywords
RIB, Diffusion, RVCF, Composite Thick Target, Gamma Spectrum
To cite this article
Firdous Ahmad Khan, Radioactive Ion Beam Targets and the Associated Processes, International Journal of Biochemistry, Biophysics & Molecular Biology. Vol. 2, No. 3, 2017, pp. 16-21. doi: 10.11648/j.ijbbmb.20170203.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
G. D. Alton, J. R. Beene, J. Phys. G 24 (1998) 1347.
[2]
G. D. Alton, J. R. Beene, R. L. Auble, D. Stracener, Indian J. Phys. 76S (2002) 9.
[3]
I. Tanihata. et al., Phys. Lett. B 160 (1985) 380.
[4]
P. G. Hansen, B. Jonson, Europhys. Lett. 4 (1987) 409.
[5]
W. Schwab, et al., Z. Phys. A 350 (1995) 283.
[6]
A. E. Champagne, Isospin Lab. works. ORNL (1992).
[7]
H. Haas, Isospin Lab. workshop, ORNL (1992).
[8]
Y. Zhang, G. D. Alton, Nucl. Instr. and Meth. A 521 (2004) 72.
[9]
G. D. Alton, J. C. Bilheux, A. D. McMillan, Nucl. Instr. and Meth. A 521 (2004) 108.
[10]
J. Crank, The Mathematics of Diffusion, second ed., Claredon, Oxford, 1975.
[11]
H. S. Carslow, J. C. Jaeger, Conduction of heat in solids, second ed., Clarendon, Oxford, 1959.
[12]
H. L. Ravn, et al., Nucl. Instr. and Meth. 139 (1976) 267.
[13]
www.cern.ch/ribo.
[14]
H. L. Ravn, L. C Carraz, J. Denimal, E. Kugler, M. Skarestad, S. Sundell and L. Westgaard, Nucl. Instr. and Meth. 139(1976) 267.
[15]
L. C. Carraz, I. R. Haldorsen, H. L. Ravn, M. Skarestad and L. Westgaard, Nucl. Instr. and Meth. 148 (1978) 217.
[16]
M. Fujioka, Y. Arai, Nucl. Instr. and Meth. 186 (1981) 409.
[17]
H. L. Ravn, S. Sundell and L. Westgaard, J. Inorg. Nucl. Chem 37 (1975) 383.
[18]
Diffusion in the condensed state, eds. J. S. Kirkaldy and D. J. Young (The Institute of Metals, London, 1987), Ch. 1.
[19]
DIFFUSE is a code that solves Fick’s second equation. It was written by G. D. Alton, J. Dellwo and I. Y. Lee.
[20]
J. F. Ziegler, The transport of ions in Matter, SRIM2003, IBM Research, Yorktown Heights, New York 10598, USA, 2003.
[21]
ANSYS is a finite element computer program an product of Swanson Analysis System Inc., Houston, PA 153420065.
[22]
A. D. LeClaire, Progr. Metal Phys. 306 (1949) 1.
[23]
L. C. Carraz, et al., Nucl. Instr. and Meth. 148 (1978)217.
[24]
G. D. Alton et al., Nucl. Instr. and Meth. B 66 (1992) 492.
[25]
G. D. Alton, Nucl. Instr. and Meth. A 382 (1996) 207.
[26]
D. Bhowmick et al., Nucl. Instr. and Meth. A 539 (2005) 54.
Browse journals by subject