Volume 2, Issue 2, April 2017, Page: 10-15
Graft Copolymer (Guar Gum-G-Poly 2-Acrylamidoglycolic Acid): Synthesis, Swelling and Flocculation Behaviors
Vijay Shankar Pandey, Department of Chemistry, S. V. M. Science & Technology P. G. College, Pratapgarh, Uttar Pradesh, India
Brajesh Kumar Shukla, Department of Chemistry, University of Allahabad, Allahabad, India
Mithilesh Yadav, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
Received: Mar. 10, 2017;       Accepted: Jul. 13, 2017;       Published: Aug. 1, 2017
DOI: 10.11648/j.ijbbmb.20170202.11      View  1267      Downloads  74
Abstract
The present paper reports the modification of guar gum through the grafting of 2-acrylamidoglycolic acid by free radical polymerization using an efficient potassium peroxydiphosphate/thioacetamide redox system in nitrogen atmosphere. The reaction conditions for maximum grafting have been optimized by varying the reaction variables including the concentration of 2-acrylamidoglycolic acid (5.3×10-2 mol dm-3), potassium peroxydiphosphate (1.2×10-2 mol dm-3), thioacetamide (TA) (2×10-3 mol dm-3), sulphuric acid (4×10-3 mol dm-3), guar gum (1 g dm−3) along with time duration (150 min) and temperature (35°C). Water swelling capacity and flocculation and studies of synthesized graft copolymer have been performed with respect to the parent polymer. The graft copolymer has been characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis.
Keywords
Graftcopolymer, Fourier Transform Infrared Spectroscopy, Thermo Gravimetric Analysis
To cite this article
Vijay Shankar Pandey, Brajesh Kumar Shukla, Mithilesh Yadav, Graft Copolymer (Guar Gum-G-Poly 2-Acrylamidoglycolic Acid): Synthesis, Swelling and Flocculation Behaviors, International Journal of Biochemistry, Biophysics & Molecular Biology. Vol. 2, No. 2, 2017, pp. 10-15. doi: 10.11648/j.ijbbmb.20170202.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Seaman, J. K. (1980). Handbook of water soluble gums and resins. New York: McGraw-Hill.
[2]
Thakur V K, M K Thakur. Recent Advances in Graft Copolymerization and Applications of Chitosan: A Review. ACS Sustainable Chem. Eng. 2014, 2, 2637−2652.
[3]
Thakur, V. K.; Thakur, M. K.; Gupta, R. K. Graft copolymers of natural fibers for green composites. Carbohydr. Polym. 2014, 104, 87− 93.
[4]
Sharma, K., Kaith, B. S., Kumar, V., Kalia, S., Kumar, V. and Swart, H. C. (2014) Water Retention and Dye Adsorption Behavior of Gg-cl-poly (acrylic acid-aniline) Based Conductive Hydrogels. Geoderma, 232-234, 45-55.
[5]
Sharma, K., Kumar, V., Kaith, B. S., Som, S., Kumar, V., Pandey, A., Kalia, S. and Swart, H. C. (2015) Synthesis of Biodegradable Gum Ghatti Based Poly (methacrylic acid-aniline) Conducting IPN Hydrogel for Controlled Release of Amoxicillin Trihydrate. Industrial & Engineering Chemistry Research, 54, 1982-1991.
[6]
Sacak, M., & Celik, M. (1996). Hydrogen peroxide initiated grafting of acrylamide onto poly (ethylene terephthalate) fibers in benzyl alcohol. Journal of Applied Polymer Science, 59, 1191–1194.
[7]
Raid, G. J. S. (1985). Biochemistry of storage carbohydrates. In P. M. Day, & R. A. Dixon (Eds.). London: Academic Press.
[8]
Wistler, R. L. (1973). Industrial gum. New York: Academic press.
[9]
Li, W., Zhao, H., Teasdale, P. R., & John, R. (2002). Preparation and characterization of poly (2-acrylamidoglycolic acid-coacrylamide) hydrogel for selective binding of Cu2+ and application to diffusive gradients in thin films measurements. Polymer, 43, 4803–4809.
[10]
Rivas, B. L., Quilodraˇın, B., & Quiroz, E. (2003). Removal properties of crosslinked poly (2-acrylamido glycolic acid) for trace heavy metal ions: Effect of pH, temperature, contact time, and salinity on the adsorption behavior. Journal of Applied Polymer Science, 88, 2614–2621.
[11]
Rao, K. S. V., Krishna Chung, I., & Ha, C. S. (2008). Synthesis and characterization of poly (acrylamidoglycolic acid) grafted onto chitosan and its polyelectrolyte complexes with hydroxyapatite. Reactive and Functional Polymer, 68, 943–953.
[12]
Durmaz, S., & Okay, O. (2000). Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: Synthesis and characterization. Polymer, 41, 3693–3704.
[13]
Rivas, B. L., Martıˇınez, E., Pereira, E., & Geckeler, K. E. (2001). Synthesis, characterization and poly chelatogenic properties of poly (2-acrylamido-2-methyl-1-propane sulfonic acid)-co- (methacrylic acid)]. Polymer International, 50, 456.
[14]
Rivas, B. L., Pereira, E., Cid, R., & Geckeler, K. E. (2005). Polyelectrolyte-assisted removal of metal ions with ultrafiltration. Journal of Applied Polymer Science, 95, 1091–1099.
[15]
M. Yadav, A. Sand, K. Behari, Journal of Biological Macromolecules. 50 (2012)1306– 1314.
[16]
G. F. Fanta, New York, NY/London, England: Wiley-Interscience. (1973a) 29–45.
[17]
Zheng X F, Lian Q, Yang H & Wang X. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly (methyl methacrylate) for 5-Fluorouracil and Controlled Release. Scientific Reports, 2016, 6:21409.
[18]
D. K. Mishra, J. Tripathy, K. Behari, Carbohydrate Polymers. 71 (2008)524.
[19]
Pandey P K, Srivastava A, Tripathy J, Behari K (2006). Graft copolymerization of acrylic acid onto guar gum initiated by vanadium (V)–mercaptosuccinic acid redox pair Carbohydrate Polymers 65, 414–420.
[20]
Doyle, C. D. (1961). Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Analytical Chemistry, 33, 77.
[21]
Vyazovkin, S., & Sbirrazzuoli, N. (2006). Isoconversional kinetic analysis of thermally stimulated processes in polymeric macromolecular. Rapid Communications, 27, 1515–1532.
[22]
Chiang, C. L., Chang, R. C., & Chiu, Y. C. (2007). Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochimica Acta, 453, 97–104.
[23]
Verma S K, Pandey V S, Yadav M, Behari K. Guar gum-g-N, N-dimethyl acrylamide: Synthesis, characterization and applications. Carbohydrate Polymers 99 (2014) 284– 290.
[24]
Harrar H F, Aiouaz N, Dairi N, Hamou A S H. Preparation of Chitosan-g-Poly (acrylamide) / Montmorillonite Superabsorbent Polymer Composites: Studies on Swelling, Thermal, and Antibacterial Properties, J. Appl. Polym. Sci. 2014, DOI: 10.1002/APP. 39747.
[25]
H. F. Zhang, H. Zhong, L. Zhang, S. B. Chen, Y. J. Zhao, Y. Zhu, Carbohydrate Polymers. 77 (2009)785–790.
[26]
Zhang, Y., Gu, Q., Yin, J., Wang, Z. and He, P. (2014) Effect of Organic Montmorillonite Type on the Swelling Behavior of Superabsorbent Nanocomposites. Advances in Polymer Technology, 33, Article ID: 21400.
[27]
Likhitha, M., Sailaja, R. R. N., Priyambika, V. S. and Ravibabu, M. V. (2014) Microwave Assisted Synthesis of Guar Gum Grafted Sodium Acrylate / Cloisite Superabsorbent Nanocomposites: Reaction Parameters and Swelling Characteristics. International Journal of Biological Macromolecules, 65, 500-508.
[28]
J. Bratby, UK: Uplands Press Ltd. (1980) Chap. 8.
[29]
S. R. Deshmukh, R. P. Singh, P. N. Chaturvedi, Journal of Applied Polymer Science. 30 (1985)4013–4018.
Browse journals by subject